
THE NATURE OF MATHEMATICS 

Mathematics relies on both logic and creativity, and it is pursued both for a variety of practical 

purposes and for its intrinsic interest. For some people, and not only professional 

mathematicians, the essence of mathematics lies in its beauty and its intellectual challenge. For 

others, including many scientists and engineers, the chief value of mathematics is how it applies 

to their own work. Because mathematics plays such a central role in modern culture, some basic 

understanding of the nature of mathematics is requisite for scientific literacy. To achieve this, 

students need to perceive mathematics as part of the scientific endeavor, comprehend the nature 

of mathematical thinking, and become familiar with key mathematical ideas and skills. 

Mathematics reveals hidden patterns that help us understand the world around us. Now much 

more than arithmetic and geometry, mathematics today is a diverse discipline that deals with 

data, measurements, and observations from science; with inference, deduction, and proof; and 

with mathematical models of natural phenomena, of human behavior, and of social systems. 

As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules 

or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, 

mathematics relies on logic rather than on observation as its standard of truth, yet employs 

observation, simulation, and even experimentation as means of discovering truth. 

The special role of mathematics in education is a consequence of its universal applicability. The 

results of mathematics--theorems and theories--are both significant and useful; the best results 

are also elegant and deep. Through its theorems, mathematics offers science both a foundation 

of truth and a standard of certainty. 

In addition to theorems and theories, mathematics offers distinctive modes of thought which are 

both versatile and powerful, including modeling, abstraction, optimization, logical analysis, 

inference from data, and use of symbols. Experience with mathematical modes of thought builds 

mathematical power--a capacity of mind of increasing value in this technological age that 

enables one to read critically, to identify fallacies, to detect bias, to assess risk, and to suggest 

alternatives. Mathematics empowers us to understand better the information-laden world in 

which we live. 

During the first half of the twentieth century, mathematical growth was stimulated primarily by 

the power of abstraction and deduction, climaxing more than two centuries of effort to extract 

full benefit from the mathematical principles of physical science formulated by Isaac Newton. 

Now, as the century closes, the historic alliances of mathematics with science are expanding 

rapidly; the highly developed legacy of classical mathematical theory is being put to broad and 

often stunning use in a vast mathematical landscape. 

Several particular events triggered periods of explosive growth. The Second World War forced 

development of many new and powerful methods of applied mathematics. Postwar government 

investment in mathematics, fueled by Sputnik, accelerated growth in both education and 

research. Then the development of electronic computing moved mathematics toward an 

algorithmic perspective even as it provided mathematicians with a powerful tool for exploring 

patterns and testing conjectures. 

At the end of the nineteenth century, the axiomatization of mathematics on a foundation of logic 

and sets made possible grand theories of algebra, analysis, and topology whose synthesis 



dominated mathematics research and teaching for the first two thirds of the twentieth century. 

These traditional areas have now been supplemented by major developments in other 

mathematical sciences--in number theory, logic, statistics, operations research, probability, 

computation, geometry, and combinatorics. 

In each of these subdisciplines, applications parallel theory. Even the most esoteric and abstract 

parts of mathematics--number theory and logic, for example--are now used routinely in 

applications (for example, in computer science and cryptography). Fifty years ago, the leading 

British mathematician G.H. Hardy could boast that number theory was the most pure and least 

useful part of mathematics. Today, Hardy's mathematics is studied as an essential prerequisite to 

many applications, including control of automated systems, data transmission from remote 

satellites, protection of financial records, and efficient algorithms for computation. 

In 1960, at a time when theoretical physics was the central jewel in the crown of applied 

mathematics, Eugene Wigner wrote about the ``unreasonable effectiveness'' of mathematics in 

the natural sciences: ``The miracle of the appropriateness of the language of mathematics for the 

formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.'' 

Theoretical physics has continued to adopt (and occasionally invent) increasingly abstract 

mathematical models as the foundation for current theories. For example, Lie groups and gauge 

theories--exotic expressions of symmetry--are fundamental tools in the physicist's search for a 

unified theory of force. 

During this same period, however, striking applications of mathematics have emerged across the 

entire landscape of natural, behavioral, and social sciences. All advances in design, control, and 

efficiency of modern airliners depend on sophisticated mathematical models that simulate 

performance before prototypes are built. From medical technology (CAT scanners) to economic 

planning (input/output models of economic behavior), from genetics (decoding of DNA) to 

geology (locating oil reserves), mathematics has made an indelible imprint on every part of 

modern science, even as science itself has stimulated the growth of many branches of 

mathematics. 

Applications of one part of mathematics to another--of geometry to analysis, of probability to 

number theory--provide renewed evidence of the fundamental unity of mathematics. Despite 

frequent connections among problems in science and mathematics, the constant discovery of 

new alliances retains a surprising degree of unpredictability and serendipity. Whether planned or 

unplanned, the cross-fertilization between science and mathematics in problems, theories, and 

concepts has rarely been greater than it is now, in this last quarter of the twentieth century. 

 

PATTERNS AND RELATIONSHIPS 

Mathematics is the science of patterns and relationships. As a theoretical discipline, 

mathematics explores the possible relationships among abstractions without concern for whether 

those abstractions have counterparts in the real world. The abstractions can be anything from 

strings of numbers to geometric figures to sets of equations. In addressing, say, "Does the 

interval between prime numbers form a pattern?" as a theoretical question, mathematicians are 

interested only in finding a pattern or proving that there is none, but not in what use such 

knowledge might have. In deriving, for instance, an expression for the change in the surface area 



of any regular solid as its volume approaches zero, mathematicians have no interest in any 

correspondence between geometric solids and physical objects in the real world. 

A central line of investigation in theoretical mathematics is identifying in each field of study a 

small set of basic ideas and rules from which all other interesting ideas and rules in that field can 

be logically deduced. Mathematicians, like other scientists, are particularly pleased when 

previously unrelated parts of mathematics are found to be derivable from one another, or from 

some more general theory. Part of the sense of beauty that many people have perceived in 

mathematics lies not in finding the greatest elaborateness or complexity but on the contrary, in 

finding the greatest economy and simplicity of representation and proof. As mathematics has 

progressed, more and more relationships have been found between parts of it that have been 

developed separately—for example, between the symbolic representations of algebra and the 

spatial representations of geometry. These cross-connections enable insights to be developed 

into the various parts; together, they strengthen belief in the correctness and underlying unity of 

the whole structure. 

Mathematics is also an applied science. Many mathematicians focus their attention on solving 

problems that originate in the world of experience. They too search for patterns and 

relationships, and in the process they use techniques that are similar to those used in doing 

purely theoretical mathematics. The difference is largely one of intent. In contrast to theoretical 

mathematicians, applied mathematicians, in the examples given above, might study the interval 

pattern of prime numbers to develop a new system for coding numerical information, rather than 

as an abstract problem. Or they might tackle the area/volume problem as a step in producing a 

model for the study of crystal behavior. 

The results of theoretical and applied mathematics often influence each other. The discoveries of 

theoretical mathematicians frequently turn out—sometimes decades later—to have 

unanticipated practical value. Studies on the mathematical properties of random events, for 

example, led to knowledge that later made it possible to improve the design of experiments in 

the social and natural sciences. Conversely, in trying to solve the problem of billing long-

distance telephone users fairly, mathematicians made fundamental discoveries about the 

mathematics of complex networks. Theoretical mathematics, unlike the other sciences, is not 

constrained by the real world, but in the long run it contributes to a better understanding of that 

world. 

  

  

MATHEMATICAL INQUIRY 

Using mathematics to express ideas or to solve problems involves at least three phases: (1) 

representing some aspects of things abstractly, (2) manipulating the abstractions by rules of 

logic to find new relationships between them, and (3) seeing whether the new relationships say 

something useful about the original things. 

Abstraction and Symbolic Representation 

Mathematical thinking often begins with the process of abstraction—that is, noticing a similarity 

between two or more objects or events. Aspects that they have in common, whether concrete or 



hypothetical, can be represented by symbols such as numbers, letters, other marks, diagrams, 

geometrical constructions, or even words. Whole numbers are abstractions that represent the 

size of sets of things and events or the order of things within a set. The circle as a concept is an 

abstraction derived from human faces, flowers, wheels, or spreading ripples; the letter A may be 

an abstraction for the surface area of objects of any shape, for the acceleration of all moving 

objects, or for all objects having some specified property; the symbol + represents a process of 

addition, whether one is adding apples or oranges, hours, or miles per hour. And abstractions are 

made not only from concrete objects or processes; they can also be made from other 

abstractions, such as kinds of numbers (the even numbers, for instance). 

Such abstraction enables mathematicians to concentrate on some features of things and relieves 

them of the need to keep other features continually in mind. As far as mathematics is concerned, 

it does not matter whether a triangle represents the surface area of a sail or the convergence of 

two lines of sight on a star; mathematicians can work with either concept in the same way. The 

resulting economy of effort is very useful—provided that in making an abstraction, care is taken 

not to ignore features that play a significant role in determining the outcome of the events being 

studied. 

Manipulating Mathematical Statements 

After abstractions have been made and symbolic representations of them have been selected, 

those symbols can be combined and recombined in various ways according to precisely defined 

rules. Sometimes that is done with a fixed goal in mind; at other times it is done in the context of 

experiment or play to see what happens. Sometimes an appropriate manipulation can be 

identified easily from the intuitive meaning of the constituent words and symbols; at other times 

a useful series of manipulations has to be worked out by trial and error. 

Typically, strings of symbols are combined into statements that express ideas or propositions. 

For example, the symbol A for the area of any square may be used with the symbol s for the 

length of the square's side to form the proposition A = s2. This equation specifies how the area is 

related to the side—and also implies that it depends on nothing else. The rules of ordinary 

algebra can then be used to discover that if the length of the sides of a square is doubled, the 

square's area becomes four times as great. More generally, this knowledge makes it possible to 

find out what happens to the area of a square no matter how the length of its sides is changed, 

and conversely, how any change in the area affects the sides. 

Mathematical insights into abstract relationships have grown over thousands of years, and they 

are still being extended—and sometimes revised. Although they began in the concrete 

experience of counting and measuring, they have come through many layers of abstraction and 

now depend much more on internal logic than on mechanical demonstration. In a sense, then, 

the manipulation of abstractions is much like a game: Start with some basic rules, then make any 

moves that fit those rules—which includes inventing additional rules and finding new 

connections between old rules. The test for the validity of new ideas is whether they are 

consistent and whether they relate logically to the other rules. 

MATHEMATICS, SCIENCE, AND TECHNOLOGY 

Because of its abstractness, mathematics is universal in a sense that other fields of human 

thought are not. It finds useful applications in business, industry, music, historical scholarship, 

politics, sports, medicine, agriculture, engineering, and the social and natural sciences. The 



relationship between mathematics and the other fields of basic and applied science is especially 

strong. This is so for several reasons, including the following: 

• The alliance between science and mathematics has a long history, dating back many 

centuries. Science provides mathematics with interesting problems to investigate, and 

mathematics provides science with powerful tools to use in analyzing data. Often, 

abstract patterns that have been studied for their own sake by mathematicians have turned 

out much later to be very useful in science. Science and mathematics are both trying to 

discover general patterns and relationships, and in this sense they are part of the same 

endeavor. 

• Mathematics is the chief language of science. The symbolic language of mathematics has 

turned out to be extremely valuable for expressing scientific ideas unambiguously. The 

statement that a=F/m is not simply a shorthand way of saying that the acceleration of an 

object depends on the force applied to it and its mass; rather, it is a precise statement of 

the quantitative relationship among those variables. More important, mathematics 

provides the grammar of science—the rules for analyzing scientific ideas and data 

rigorously. 

• Mathematics and science have many features in common. These include a belief in 

understandable order; an interplay of imagination and rigorous logic; ideals of honesty 

and openness; the critical importance of peer criticism; the value placed on being the first 

to make a key discovery; being international in scope; and even, with the development of 

powerful electronic computers, being able to use technology to open up new fields of 

investigation. 

• Mathematics and technology have also developed a fruitful relationship with each other. 

The mathematics of connections and logical chains, for example, has contributed greatly 

to the design of computer hardware and programming techniques. Mathematics also 

contributes more generally to engineering, as in describing complex systems whose 

behavior can then be simulated by computer. In those simulations, design features and 

operating conditions can be varied as a means of finding optimum designs. For its part, 

computer technology has opened up whole new areas in mathematics, even in the very 

nature of proof, and it also continues to help solve previously daunting problems. 

 

Application 

Mathematical processes can lead to a kind of model of a thing, from which insights can be 

gained about the thing itself. Any mathematical relationships arrived at by manipulating abstract 

statements may or may not convey something truthful about the thing being modeled. For 

example, if 2 cups of water are added to 3 cups of water and the abstract mathematical operation 

2+3 = 5 is used to calculate the total, the correct answer is 5 cups of water. However, if 2 cups 

of sugar are added to 3 cups of hot tea and the same operation is used, 5 is an incorrect answer, 

for such an addition actually results in only slightly more than 4 cups of very sweet tea. The 

simple addition of volumes is appropriate to the first situation but not to the second—something 

that could have been predicted only by knowing something of the physical differences in the two 

situations. To be able to use and interpret mathematics well, therefore, it is necessary to be 



concerned with more than the mathematical validity of abstract operations and to also take into 

account how well they correspond to the properties of the things represented. 

Sometimes common sense is enough to enable one to decide whether the results of the 

mathematics are appropriate. For example, to estimate the height 20 years from now of a girl 

who is 5' 5" tall and growing at the rate of an inch per year, common sense suggests rejecting the 

simple "rate times time" answer of 7' 1" as highly unlikely, and turning instead to some other 

mathematical model, such as curves that approach limiting values. Sometimes, however, it may 

be difficult to know just how appropriate mathematical results are—for example, when trying to 

predict stock-market prices or earthquakes. 

Often a single round of mathematical reasoning does not produce satisfactory conclusions, and 

changes are tried in how the representation is made or in the operations themselves. Indeed, 

jumps are commonly made back and forth between steps, and there are no rules that determine 

how to proceed. The process typically proceeds in fits and starts, with many wrong turns and 

dead ends. This process continues until the results are good enough. 

But what degree of accuracy is good enough? The answer depends on how the result will be 

used, on the consequences of error, and on the likely cost of modeling and computing a more 

accurate answer. For example, an error of 1 percent in calculating the amount of sugar in a cake 

recipe could be unimportant, whereas a similar degree of error in computing the trajectory for a 

space probe could be disastrous. The importance of the "good enough" question has led, 

however, to the development of mathematical processes for estimating how far off results might 

be and how much computation would be required to obtain the desired degree of accuracy. 


